Reg. No.:	• • • • • • • • • • • • • • • • • • • •
-----------	---

Name:....

U8438

University of Kerala

First Semester Degree Examination, November 2024
Four Year Under Graduate Programme
Discipline Specific Core Course
MATHEMATICS

UK1DSCMAT110 - MATRICES AND LINEAR EQUATION

Academic Level: 100-199

Time:2Hours Max.Marks:56

Part A.
AnswerAllQuestions, ObjectiveType. 1MarkEach.
(CognitiveLevel: Remember/Understand) 6Marks.Time: 5Minutes

	(Cognitive Deven: Remember, Charles and) orial RS: Time: Crimates			
Qn. No.	Question	Cognitive Level	Course Outcome(CO)	
1.	Define Trace of a Matrix	Remember	CO1	
2.	Describe a Diagonal Matrix	Remember	CO2	
3.	Compute $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^{1000}$	Understand	CO1	
4.	If $A = \begin{bmatrix} sin\theta & cos\theta \\ -cos\theta & sin\theta \end{bmatrix}$ Find $det(A)$	Understand	CO2	
5.	Define Unit Vector	Remember	CO3	
6.	Define Norm of a vector	Remember	CO3	

PartB. AnswerAllQuestions, Two-Three sentences. 2MarksEach. (CognitiveLevel:Remember/Understand/Apply) 10Marks. Time: 20Minutes

Qn. No.	Question	Cognitive Level	Course Outcome (CO)
7.	List all the elementary row operations on a matrix.	Remember	CO1
8.	Calculate the dot product of the vectors $\mathbf{u} = (-1, 3, 5, 7)$ and $\mathbf{v} = (-3, -4, 1, 0)$	Remember	CO2

9.	Consider the Matrices $A = \begin{bmatrix} -1 & 0 \\ 2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$ Verify that $AB = BA$	Remember	CO2
10.	Find the distance D between the point $(1, 3, 5, 7)$ and the plane $2x - 3y + 6z = -1$	Understand	CO3
11.	Solve the system of Linear Equation $x-y=1$ $2x+y=6$	Apply	CO4

Part C.

$\ \, \textbf{Answer all 4} \textbf{questions, choosing among options within each question.} \\$ Short Answer. 4Marks Each. (CognitiveLevel:Remember/Understand/Apply/Analyse) 16 Marks.Time: 35 Minutes

On		Cognitive	Course
Qn.	Question		
No.	<i>(</i>	Level	Outcome
			(CO)
12.	A .Find the column - row expansion of the product AB where	Understand	CO1
	$A = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 0 & 4 \\ -3 & 5 & 1 \end{bmatrix}$		
	[12 -11 1-3 5 11		
	O.D.		
	OR		
	[1 -3 7 2 5]		
	B . Find the reduced row echelon form $A = \begin{bmatrix} 1 & -3 & 7 & 2 & 5 \\ 0 & 1 & 2 & -4 & 1 \\ 0 & 0 & 1 & 6 & 9 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$		
	B. Find the reduced row echelon form $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$		
	A .If B and C are both inverse of the matrix A then show that $B = C$	Understand	CO2
13.			
15.	OR		
	B .Determine whether the given homogeneous system has		
	nontrivial solution		
	$x_1 + 6x_2 + 4x_3 = 0$		
	$2x_1+4x_2-x_3=0$		
	$2X_1 + 4X_2 - X_3 = 0$		
	$-x_1 + 2x_2 + 3x_3 = 0$		
14.	$-x_1+2x_2+5x_3 = 0$ A .Find P (A) for P(x) = x^2 - 2x -3 and A = $\begin{bmatrix} -1 & 2 \\ 0 & 3 \end{bmatrix}$	Analyse	CO3
	A . This $A = A$ is a finite $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$		
	OR		
	B . Find the determinant of the matrix $A = \begin{bmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{bmatrix}$ by		
	B . Find the determinant of the matrix $A = \begin{vmatrix} -2 & -4 & 3 \end{vmatrix}$ by		
	5 4 -2		
	cofactor expansion along the first row		
15.	A.Let $u = (2, -1, 3)$ and $a = (4, -1, 2)$ Find the vector component	Apply	CO4
15.		Appry	CO4
	of u along a and the vector component of u orthogonal to a		
	OR		
	B . Show that $u = (-2, 3, 1, 4)$ and $v = (1, 2, 0, -1)$ are orthogonal		
	vector in R ⁴		

PartD.

Answer all 4questions, choosing among options within each question.

Long Answer. 6Marks Each.

(CognitiveLevel:Understand/Apply/Analyse/Evaluate/Create) 24Marks. Time: 60Minutes

Qn. No.	Question	Cognitive Level	Course Outcome(CO)
16	A.Solve by Gauss – Jordan Elimination.	Understand	CO1
	$x_1 + 3x_2 - 2x_3 + 2x_5 = 0$		
	$2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 = -1$		
	$5x_3 + 10x_4 + 15x_6 = 5$ $2x_1 + 6x_2 + 8x_4 + 4x_5 + 18x_6 = 6$		
	$2X_1 + 0X_2 + 0X_4 + 1X_5 + 10X_6 = 0$		
	OR		
	B .If A is Invertible and n is a non negative integer then prove		
	that a) A^{-1} is invertible and $(A^{-1})^{-1} = A$		
	b) A^n is invertible and $(A^n)^{-1} = A^{-n} = (A^{-1})^n$		
17.	A .Determine the values of a for which the system	Understand	CO2
17.	x + 2y - 2z = 4,		
	3x - y + 5z = 2,		
	$4x + y + (a^2 - 14)z = a + 2$		
	has		
	i) no solutions,		
	ii) exactly one solution iii) infinitely many solutions.		
	OR		
	B .Using row operation to find A^{-1} where $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$		
	L1 0 8J		
18.	A.Use Cramer's rule to solve the system of equation	Analyse	CO3
	$x_1 + 2x_3 = 6$		
	$-3x_1 + 4x_2 + 6x_3 = 30$		
	$-x_1 - 2x_2 + 3x_3 = 8$		
	OR 13 5 -2 61		
	B .Evaluate det (A) where $A = \begin{bmatrix} 3 & 5 & -2 & 6 \\ 1 & 2 & -1 & 1 \\ 2 & 4 & 1 & 5 \\ 3 & 7 & 5 & 3 \end{bmatrix}$		
	B .Evaluate det (A) where $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 1 & 5 \end{bmatrix}$		
	l _{3 7 5 3} J		
19.	A.Prove that the absolute value of the determinant	Apply	CO4
17.	$\det\begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix}$ is equal to the area of the parallelogram in 2-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	- 1 2-		
	space determine by the vectors $\mathbf{u} = (\mathbf{u}_1 \ , \mathbf{u}_2)$ and $\mathbf{v} = (\mathbf{v}_1 \ , \mathbf{v}_2)$		
	OR B .a) Find the area of the triangle determine by the point		
	$P_1(2, 2, 0)$ $P_2(-1, 0, 2)$ and $P_3(0, 4, 3)$		
	b)Calculate the scalar triple product u.(v x w) of the vector		
	$u = 3i - 2j - 5k \ v = i + 4j - 4k \ and \ w = 3j + 2k$		